\geq
Q
-
α
Ν
0
۵
- 3
ב
ď
3
-
≥
>
<
```
Q
Ξ
_
_

STUDY MODULE DE	ESCRIPTION FORM	
Name of the module/subject Software engineering	Code 1010331551010330109	
Field of study  Information Engineering	Profile of study (general academic, practical) (brak)	Year /Semester 3 / 5
Elective path/specialty	Subject offered in:  Polish	Course (compulsory, elective)  obligatory
Cycle of study:	Form of study (full-time,part-time)	
First-cycle studies full-time		
No. of hours		No. of credits
Lecture: 15 Classes: - Laboratory: 15	Project/seminars:	- 3
Status of the course in the study program (Basic, major, other) (brak)	(university-wide, from another fi	eld) ( <b>brak)</b>
Education areas and fields of science and art	ECTS distribution (number and %)	
technical sciences	3 100%	
Technical sciences	3 100%	
Responsible for subject / lecturer:		
dr inż. Andrzej Sikorski email: andrzej.sikorski		

tel. 6653958

Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań

## Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge learnt at high school.  Student has theoretical and partially practical knowledge concerning: programming constructions, implementation of algorithms, programming styles, verification of software correctness, formal languages, compilers, and platforms.
2	Skills	Student is able to find information from professional literature, databases and other sources; he/she can also integrate and correctly interpret the gained information and then to conclude and formulate his/her own opinions.
3	Social competencies	Student is aware of an importance of non-technical aspects and then consequences of software engineer's activities; he/she understands is/her responsibility for his/her decisions.

# Assumptions and objectives of the course:

The aim of the two-semester course of software engineering is to present an engineering approach to software development. During the first semester students are taught to build a software object model using the UML standard. An overview of software life cycle models is presented.

## Study outcomes and reference to the educational results for a field of study

### Knowledge:

- 1. Student has basic knowledge concerning software enegineering: concept of MDA (Model Driven Architecture), object modeling using the UML standard, quality of a software process and product. [K_W12]
- $2. \ Student \ is \ knowledgeable \ with \ the \ state \ of \ art \ and \ modern \ trends \ in \ software \ engineering \ and \ computing. \ -\ [K_W19]$

#### Skills:

- 1. Student is able to formulate requirements, to build an object model, and assess a simple information system, its functions, and [K_U16]
- 2. Student is able to prepare and present a short presentation about his/her own engineering solution. [K_U04]

#### Social competencies:

- 1. Student has a broaded awareness of an importance of non-technical aspects and then consequences of software engineer  $[K_K02]$
- 2. Student is aware of his/her responsibility for the work done. He/she points out his/her readiness to work in team and to be responsible for results of tasks realized in team. [K_K04]

### Assessment methods of study outcomes

## Faculty of Electrical Engineering

The content of lectures presented in the first semester of the software engineering course is a subject of an exam after the second semester of this course. After the first semester student's work is assessed on a base of his/her activity in classess and results of a test.

Student's work in laboratories is assessed on the base of partial marks given for each UML diagram and other artefact (requirements document).

#### **Course description**

Lectures. Field of software engineering. Concept of MDA (Model Driven Architecture). Assumptions and elements of the UML standard: modeling of use cases, classes, bjects, interfaces, stereotypes, derived elements, packages, components. Modeling an object behavior using: statechart, activity diagram, interaction diagrams. Primary and supporting processes, including documenting, in software development. Overview of software life cycle models: waterfall, RAD, pyramid, V, spiral, WinWin, incremental, and iterative-incremental model. Specification of requirements. Repository. Overviews and software inspections. Process-oriented approach recommended in ISO 9000. Capability Maturity Model for Software. Key areas assigned to maturity levels in the CMM model.

Laboratories. Specifying software requirements. Development of software object using the UML 2.0 standard.	model (use cases, obje	ects, and classes)
Basic bibliography:		
Additional bibliography:		
Result of average student's wor	kload	
Activity	Time (working hours)	
Participation in lectures		15
2. Participation in labs	15	
3. Constuction of an object model, preparation to pass a test after the first part of	30	
course		10
4. Consultation, test		
Student's workload		
Source of workload	hours	ECTS
Total workload	70	3
Contact hours	20	1

50

Practical activities